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S

This paper considers the problem of comparing a new treatment with a control based
on multiple endpoints. The hypotheses are formulated with the goal of showing that the
treatment is equivalent, i.e. not inferior, on all endpoints and superior on at least one
endpoint compared to the control, where thresholds for equivalence and superiority
are specified for each endpoint. Roy’s (1953) union-intersection and Berger’s (1982)
intersection-union principles are employed to derive the basic test. It is shown that the
critical constants required for the union-intersection test of superiority can be sharpened
by a careful analysis of its type I error rate. The composite - test is illustrated by an
example and compared in a simulation study to alternative tests proposed by Bloch et al.
(2001) and Perlman & Wu (2004). The Bloch et al. test does not control the type I error
rate because of its nonmonotone nature, and is hence not recommended. The - and
the Perlman & Wu tests both control the type I error rate, but the latter test generally
has a slightly higher power.

Some key words: Bootstrap; Hotelling’s T 2 test; Intersection-union principle; Multivariate one-sided likelihood
ratio test; Union-intersection principle

1. I

Many clinical trials compare a treatment with a control on multiple endpoints. Often,
the treatment is expected to have a positive effect on most, but not necessarily on all,
endpoints. However, in order for the treatment to be preferred to the control, it may be
sufficient to show that the treatment is not inferior, i.e. not much worse, on any of the
endpoints and is strictly superior on at least one endpoint, or some specified number of
endpoints. We formulate this as a combination of a union-intersection and an intersection-
union testing problem, and propose a test based on the corresponding testing principles.
Bloch et al. (2001) considered a similar formulation to ours, but used Hotelling’s T 2
statistic to test for superiority. Perlman & Wu (2004) suggested replacing the T 2 statistic
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in the Bloch et al. test with a one-sided likelihood ratio statistic. We compare both these
tests with our proposed test via simulation.

2. P  

Consider a treatment group, group 1, and a control group, group 2, with n1 and n2
patients. Suppose that m�2 endpoints are measured on each patient. Denote the
random data vectors from group i by X

ij
= (X

ij1
, X
ij2

, . . . , X
ijm
), for i=1, 2 and

j=1, 2, . . . , n
i
. We assume that theX

ij
are independent and identically distributed random

vectors from an m-variate normal distribution with mean vector m
i
= (m

i1
, m
i2

, . . . , m
im
)

and a common unknown covariance matrix S={s
kl
} with s

kk
=s2
k
=var (X

ijk
) and

s
kl
=cov (X

ijk
, X
ijl
) for kNl. Denote the correlation matrix by R with off-diagonal entries

r
kl
=corr (X

ijk
, X
ijl
)=s
kl

/s
k
s
l
. Let h

k
=m
1k
−m
2k
and let h= (h1 , . . . , hk )=m1−m2 be the

vector of mean differences between the treatment and control.
The treatment is regarded as superior to the control on the kth endpoint if h

k
>d
k
and

equivalent, i.e. non-inferior, to the control if h
k
>−e

k
, where the constants d

k
, e
k
�0 are

specified. Note that often d
k
=0 is used because most experimental treatments are expected

to show only small improvements over the control which are nonetheless regarded as
beneficial. The hypotheses for showing the superiority and equivalence of the treatment
on the kth endpoint are as follows:

H(S)
0k

: h
k
∏d
k
versus H(S)

1k
: h
k
>d
k
, H(E)

0k
: h
k
∏−e

k
versus H(E)

1k
: h
k
>−e

k
.

Let

H(S)
0
= o
m

k=1
H(S)
0k

, H(S)
1
= p
m

k=1
H(S)
1k

, H(E)
0
= p
m

k=1
H(E)
0k

, H(E)
1
= o
m

k=1
H(E)
1k

.

It is desired to test

H
0
=H(S)
0
nH(E)
0
versus H

1
=H(S)
1
mH(E)
1

(2·1)

at a preassigned level a. For m=2, the regions of the parameter space corresponding to
H0 and H1 are shown in Fig. 1. Note that (2·1) is a combination of union-intersection

Fig. 1. Regions of parameter space corresponding to
hypotheses H0 and H1 .
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and intersection-union testing problems. If d
k
=e
k
=0 for all k then H(S)

0k
=H(E)
0k
=H
0k
,

say, and H(S)
1k
=H(E)
1k
=H
1k
, say. In that case, (2·1) reduces to H

0
=^m
k=1

H
0k
versus

H
1
=]m
k=1

H
1k
, which can be tested using the intersection-union approach of Berger (1982)

resulting in the  test of Laska & Meisner (1989).

3. T    

Let X9 1·k and X9 2·k be the sample means for the kth endpoint for groups 1 and 2,
respectively. Furthermore, let S2

1
, S2
2
, . . . , S2

m
be the pooled sample variances based on

n=n1+n2−2 degrees of freedom. We follow the usual convention of upper-case letters
for random variables and the corresponding lower case letters for their observed values.
The pivotal random variable for h

k
is

T
k
=

(X9 1·k−X9 2·k )−hk
S
k
√(1/n

1
+1/n

2
)

(1∏k∏m). (3·1)

Each T
k
is marginally distributed as t

n
. The joint distribution of (T1 , T2 , . . . , Tm ) is the

multivariate generalisation of a bivariate t-distribution considered by Siddiqui (1967).
Since the joint distribution of (T1 , T2 , . . . , Tm ) depends on the unknown correlation

matrix R, the exact critical constants needed to compute simultaneous 100(1−a)% con-
fidence intervals for the h

k
are not available. Based on the Bonferroni method, conservative

lower one-sided confidence intervals are given by

h
k
�L
k
=x:1·k−x:2·k−t

n,a/m
s
kSA 1n

1
+

1

n
2
B (1∏k∏m), (3·2)

where t
n,a/m
is the upper a/m critical point of the t

n
distribution. We reject H0 if all L k>−ek

and at least one L
k
>d
k
. Defining the t-statistics for testing the superiority and equivalence

of the treatment on the kth endpoint by

t(S)
k
=

x:1·k−x:2·k−dk
s
k
√(1/n

1
+1/n

2
)
, t(E)
k
=

x:1·k−x:2·k+ek
s
k
√(1/n

1
+1/n

2
)

(1∏k∏m), (3·3)

we see that the above test reduces to

min
1∏k∏m

t(E)
k
>t
n,a/m

, max
1∏k∏m

t(S)
k
>t
n,a/m

. (3·4)

In fact, since all inferences follow from a single set of simultaneous confidence bounds
(3·2), all endpoints can be classified with 1−a confidence as follows: on the kth endpoint
the treatment is not equivalent, i.e. inferior, if L

k
∏−e

k
, is equivalent but not superior if

−e
k
<L
k
∏d
k
, and is superior if L

k
>d
k
. In the next section we show how the test (3·4)

can be sharpened by applying the union-intersection and intersection-union principles of
test construction.

4. A    -  - 

4·1. T he union-intersection and intersection-union, -, test

An a-level test of (2·1) derived by applying the intersection-union principle is as follows:
test H(S)

0
=]m
k=1

H(S)
0k
and H(E)

0
=^m
k=1

H(E)
0k
separately at level a, and reject H0 if both are

rejected. The union-intersection test (Roy, 1953) of H(S)
0
rejects at level a using the
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Bonferroni approximation if max
1∏k∏m

t(S)
k
>t
n,a/m
. The intersection-union test (Berger,

1982) of H(E)
0
rejects at level a if min

1∏k∏m
t(E)
k
>t
n,a
. We will refer to this procedure as the

- test. Note the smaller critical constant, t
n,a
, for the intesection-union test of H(E)

0
compared to that used by the simultaneous confidence interval test (3·4).
This - test is conservative because it requires that the type I error probability be

separately controlled for H(E)
0
and H(S)

0
, which assumes the least favourable configuration

that one of the two hypotheses is true and the other is infinitely false. It is possible to
have H(E)

0
true and H(S)

0
infinitely false; for example, we can have h

k
=−e

k
and h

l
�2

for lNk. In fact, this is the least favourable configuration for the intersection-union test.
However, we cannot have H(S)

0
true and H(E)

0
infinitely false because if h

k
∏d
k
for all k then

it cannot be simultaneously true that h
l
�2 for some l. This suggests that, although

the critical constant t
n,a
for the intersection-union test of H(E)

0
cannot be reduced, it may

be possible to reduce the critical constant t
n,a/m

for the union-intersection test of H(S)
0
.

From now on, we will use a general notation, c and d, for the critical constants of H(E)
0

and H(S)
0
, respectively. In the next section we investigate how to find the smallest possible

values of c and d.

4·2. Sharpened critical constants for the - test

By using the relationship

t(S)
k
=t(E)
k
−

d
k
+e
k

s
k
√(1/n

1
+1/n

2
)

(1∏k∏m),

we can write the - test as

min
1∏k∏m qt(S)k + d

k
+e
k

s
k
√(1/n

1
+1/n

2
)r>c, max

1∏k∏m
t(S)
k
>d. (4·1)

For m=2, s
k
=1, d

k
=0, e

k
=0·5 and n

k
=50, this rejection region is shown in Fig. 2; the

rejection regions for the Bloch et al. (2001) and the Perlman & Wu (2004) tests, which
are discussed in § 6, are also shown in Fig. 2 for an easy comparison. Note that, if H(E)

0
is

Fig. 2. Rejection regions of the - test, solid line,
Bloch et al. (2001) test, dashed line, and Perlman &

Wu (2004) test, dotted lines, for m=2.
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rejected and if

d< max
1∏k∏m qc− d

k
+e
k

s
k
√(1/n

1
+1/n

2
)r ,

then H(S)
0
is automatically rejected; thus superiority need not be tested separately.

We obtain an expression for the type I error probability of the - test (4·1) in
Lemma 1, and then find its least favourable configuration in Lemma 2.

L 1. Define

Z
k
=

X9 1·k−X9 2·k−hk
s
k
√(1/n

1
+1/n

2
)
~N(0, 1), U

k
=

S
k
s
k
~Sx2nn (1∏k∏m),

so that Z= (Z
1
, . . . , Z

m
) has an m-variate standard normal distribution with correlation

matrix R independently of U= (U
1
, . . . , U

m
). Denote the density functions of Z and U by

w
m
(z|R) and h

m,n
(u|R), respectively. L et

d*
k
=

d
k

s
k
√(1/n

1
+1/n

2
)
, e*
k
=

e
k

s
k
√(1/n

1
+1/n

2
)
, h*
k
=

h
k

s
k
√(1/n

1
+1/n

2
)
. (4·2)

Furthermore, let

a
k
=h*
k
+e*
k
, b
k
=h*
k
−d*
k

(1∏k∏m). (4·3)

T hen the probability that the - test (4·1) rejects H
0

of (2·1) can be written as

Q(h)=P2
0

. . . P2
0
Y(h|u)h

m,n
(u|R)du, (4·4)

where

Y(h|u)=P2
cu
1
−a
1

. . . P2
cu
m
−a
m

w
m
(z|R)dz−P du1−b1

cu
1
−a
1

. . . P dum−bm
cu
m
−a
m

w
m
(z|R)dz. (4·5)

In the above, if d<c− (a
k
+b
k
)/u
k

for any u
k
�0 (1∏k∏m) then the second integral is

taken to be zero.

Proof. Write the desired probability as the difference between

pr {T (S)
k
>c− (d*

k
+e*
k
)/U
k
for all k}, pr {c− (d*

k
+e*
k
)/U
k
∏T (S)
k
∏d for all k}.

Then, by conditioning on the U
k
, we can write the two probabilities as multivariate

normal integrals shown in (4·5). The final expression (4·4) is obtained by removing the
conditioning on U. %

To simplify the notation, from now on, we will assume that S and R are known or
equivalently that n�2. Therefore U

k
� 1 for all k and Q(h)�Y (h|u=1

m
) almost surely,

where 1
m
is an m-vector of ones.

L 2. T he type I error probability of the - test is maximised at one or more of
the following configurations:


0
={h

1
=d
1
, . . . , h

m
=d
m
} or 

k
={h

k
=−e

k
, h
l
�2, lNk} (1∏k∏m).

(4·6)
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Proof. To find the maximum of Q(h) with respect to h
k
over H

0
=H(S)
0
n{^m

k=1
H(E)
0k

},
take the derivatives of Q(h) with respect to h*

k
3h
k
. In particular, for k=1, using

∂a
1
/∂h*
1
=∂b

1
/∂h*
1
=1, we obtain

∂Q(h)

∂h*
1
=P2
c−a
2

. . . P2
c−a
m

w
m
(c−a

1
, z
2
, . . . , z

m
|R)dz

2
. . . dz

m

−q−P d−b2
c−a
2

. . . P d−bm
c−a
m

w
m
(d−b

1
, z
2
, . . . , z

m
|R)dz

2
. . . dz

m

+P d−b2
c−a
2

. . . P d−bm
c−a
m

w
m
(c−a

1
, z
2
, . . . , z

m
|R)dz

2
. . . dz

mr
=qP2

c−a
2

. . . P2
c−a
m

w
m
(c−a

1
, z
2
, . . . , z

m
|R)dz

2
. . . dz

m

−P d−b2
c−a
2

. . . P d−bm
c−a
m

w
m
(c−a

1
, z
2
, . . . , z

m
|R)dz

2
. . . dz

mr
+P d−b2
c−a
2

. . . P d−bm
c−a
m

w
m
(d−b

1
, z
2
, . . . , z

m
|R)dz

2
. . . dz

m

>0.

Thus, Q(h) is increasing in each h
k
and hence is maximised over H(S)

0
at 0 and over

H(E)
0k
at 

k
for 1∏k∏m. The global maximum is found by evaluating Q(h) at each of

these m+1 least favourable configurations, and taking the overall maximum. %

Let

e
k
=d*
k
+e*
k
=

d
k
+e
k

s
k
√(1/n

1
+1/n

2
)

(1∏k∏m). (4·7)

Then for 0 we obtain a
k
=e
k
and b

k
=0, so that

Qmax,0= sup
hµH(S)
0

Q(h)

=P2
c−e
1

. . . P2
c−e
m

w
m
(z|R)dz−P d

c−e
1

. . . P d
c−e
m

w
m
(z|R)dz

=prq min1∏k∏m
(Z
k
+e
k
)>c and max

1∏k∏m
Z
k
>dr . (4·8)

For 
k
(1∏k∏m) we obtain a

k
=0, b

k
=−e

k
and a

l
, b

l
�2 for lNk, so that

Qmax,k= sup

hµH(E)
0k

Q(h)

=P2
c
P2
−2

. . . P2
−2
w
m
(z|R)dz−P d−ek

c
P−2
−2

. . . P−2
−2
w
m
(z|R)dz

=1−W(c). (4·9)
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Equating this to a, we obtain c=z
a
. For n<2, the above equation can be shown to be

Qmax,k=1−F
n
(c), where F

n
( . ) is the distribution function of the t

n
distribution. Setting

Qmax,k=a, we see that the smallest value of c is tn,a , as conjectured earlier. In the following
lemma we obtain the limiting values of d.

L 3. If e
k
=d*
k
+e*
k
� 0 for all k then d=c=z

a
controls the type I error rate

conservatively at level a. If e
k
�2 for all k then d=z

m,R,a
, the upper a critical point of

max
1∏k∏m

Z
k
, controls the type I error rate exactly at level a.

Proof. If e
k
� 0 for all k then by substituting d=c in (4·8) we obtain

Qmax,0=P2
c

. . . P2
c
w
m
(z|R)dz∏1−W(c)=a.

Therefore, the type I error probability is controlled below a. If e
k
�2 for all k then we

obtain

Qmax,0=1−P d
−2

. . . P d
−2
w
m
(z|R)dz=1−pr {max (Z

1
, . . . , Z

m
)∏d}=a

by substituting d=z
m,R,a
. %

From the first result in Lemma 3 we see that it is possible to have d∏c for small e
k
.

Note also that z
a/m
is the Bonferroni upper bound on z

m,R,a
.

4·3. Bootstrap implementation of the - test

The previous results show that, to apply the - test at level a, we must set c=t
n,a

and then solve for d by setting the finite degrees of freedom version of (4·8) equal to a;
that is

prq min1∏k∏m
(T
k
+e
k
)>c and max

1∏k∏m
T
k
>dr=a, (4·10)

where T1 , T2 , . . . , Tm have the generalised multivariate t distribution referred to earlier.
Evaluation of this probability requires the knowledge of S. To obviate this difficulty, we
propose the following bootstrap algorithm. This algorithm does not directly compute d,
but determines if max

1∏k∏m
t(S)
k
>d or not, and hence whether H(S)

0
can be rejected or not.

In conjunction with the test of H(E)
0
, this enables us to conduct the - test in (4·1).

The algorithm is as follows.

Step 0. If min
1∏k∏m

t(E)
k
∏c=t

n,a
then accept H(E)

0
and hence H0 and stop. Otherwise go

to Step 1.

Step 1. Centre the observed data vectors x
ij
by subtracting the sample mean vector x: i· .

Denote the centred data vectors by x*
ij
(i=1, 2; 1∏ j∏n

i
).

Step 2. Draw B bootstrap samples with replacement from the pooled sample of centred
data vectors. Denote the bth bootstrap sample by x*

ijb
(i=1, 2; 1∏ j∏n

i
; 1∏b∏B).

Step 3. Calculate the statistics t*(E)
kb
and t*(S)

kb
for the bootstrap data using (3·3) for

k=1, 2, . . . , m and b=1, 2, . . . , B.
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Step 4. For the bth bootstrap sample, if min
1∏k∏m

t*(E)
kb
>c=t

n,a
and max

1∏k∏m
t*(S)
kb
>

max
1∏k∏m

t(S)
k
then reject H0 ; otherwise accept H0 . Repeat this for all B bootstrap samples.

Step 5. Let A be the number of bootstrap samples in which H0 is rejected and let
p@=A/B be the corresponding proportion. If p@<a then reject H(S)

0
and hence H0 at level a.

The following points should be noted regarding the bootstrap implementation of the
- test:
(i) the algorithm essentially sets d=max

1∏k∏m
t(S)
k
and estimates the p-value for

rejecting H(S)
0
conditional on having rejected H(E)

0
at level a;

(ii ) it does not explicitly make use of normality, other than using c=t
n,a
, and in this

respect the algorithm is similar to the Bloch et al. (2001) algorithm;
(iii) it can be readily modified to allow for heteroscedastic covariance matrices, in which
case the t-statistics in (3·3) must be also modified to use separate variance estimates
for the treatment and control groups.

5. E

We use an example from Tang et al. (1993) about the efficacy of an inhaled drug for
asthma compared to placebo. Seventeen patients were randomised in a double-blind cross-
over trial. There were four standard respiratory function measures, i.e. endpoints, namely
forced expiratory volume, , forced vital capacity, , peak expiratory flow rate, ,
and penetration index, . There was no period or crossover effect, so the comparisons

Table 1. Data for the asthma example

   

Mean difference 7·56 4·81 2·29 0·081
Std dev. of difference 18·53 10·84 8·51 0·17
t-statistic 1·682 1·830 1·110 1·965
p-value 0·0560 0·0430 0·1417 0·0335

, forced expiratory volume; , forced vital capacity;
, peak expiratory flow rate; , penetration index.

for the individual endpoints could be performed using paired t-statistics. The summary
statistics are shown in Table 1 and the estimated correlation matrix is

C1·000 0·095 0·219 −0·162

1·000 0·518 −0·059

1·000 0·513

1·000D .
For these data, the ordinary least squares and generalised least squares statistics of
O’Brien (1984) are highly significant indicating a global improvement. However, none
of the individual endpoints can be shown to have significant improvement at a=0·05
using the Bonferroni method or one of its sharpened versions.
Suppose d

k
=0 and e

k
=ls

k
with l=0·50 for 1∏k∏4. Then we have

e
k
=
d
k
+e
k

s
k
√(1/n)

j0·50√17=2·062;
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here √(1/n1+1/n2 ) is replaced by √(1/n) since this is essentially a paired-sample study
with n patients. The t-statistics given Table 1 are the superiority t-statistics, t(S)

k
, since we

assumed d
k
=0 for all k.

For a=0·05, we have c=t16,0·05=1·746. Applying (4·1) and taking s
k
as approximately

equal to s
k
, we find that

min
1∏k∏4

{t(S)
k
+2·062}=min {3·744, 3·892, 3·172, 4·027}>c=1·746,

so that H(E)
0
is rejected.

We next apply the bootstrap algorithm of § 3 to test H(S)
0
, but, since only summary

statistics are available for these data, we cannot directly apply the bootstrap algorithm
since it is given for raw data. Instead, we applied a parametric version in which we drew
samples from a four-variate normal distribution with a null mean vector and the estimated
correlation matrix along with the sample standard deviations given in Table 1. A total
of 100 000 bootstrap samples were drawn and the estimated proportion of rejections of
H(S)
0
was observed to be 0·04488. Therefore H0 is rejected at the 5% level and the inhaled

drug is shown to be preferred to the placebo.

6. T   

6·1. T he Bloch, L ai & T ubert-Bitter (2001) test

Bloch et al. (2001) considered the superiority-equivalence formulation, for the special
case of all d

k
=0, in a general nonparametric setting using a bootstrap approach similar

to ours. To test H(S)
0
they employed a one-sided version of Hotelling’s T 2 statistic, modified

to allow for unequal covariance matrices, which equals T 2 if H(E)
0
is rejected and is zero

otherwise. To test H(E)
0
in the normal setting, they used the same intersection-union test

that we used, with rejection region min
1∏k∏m

t(E)
k
>t
n,a
. If we denote the indicator function

of an event A by I(A), their test rejects H0 if

T 2×IA min1∏k∏m
t(E)
k
>t
n,aB>d, (6·1)

where d>0 is a critical constant that is determined via bootstrap to make the type I
error rate equal to the specified level a under the null configuration. For the normal,
homoscedastic setting of the present paper, we have

T 2=A n
1
n
2

n
1
+n
2
B (x:1·−x:2· )∞SC−1 (x:1·−x:2· ),

where x: i·= (x: i·1 , x: i·2 , . . . , x: i·m )∞, for i=1, 2, and

SC=
Wn1j=1

(x
1j
−x:1· ) (x1j−x:1· )∞+W

n
2j=1

(x
2j
−x:2· ) (x2j−x:2· )∞

n
1
+n
2
−2

is the pooled sample covariance matrix.
It should be noted that the Bloch et al. test is non-monotone (Cohen & Sackrowitz,

1998) for certain choices of e
k
; see Fig. 2. Thus the type I error of the test in the interior

of H(S)
0

:]m
k=1
h
k
∏0 may exceed that at the null configuration, h

k
=0 for all k, which is

the configuration used to determine the critical constant d, so that the test may become
anti-conservative. Perlman & Wu (2004) noted this drawback of the Bloch et al. test in
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their Footnote 2 and in their §§ 3 and 4, where they stated that the Bloch et al. test does
not have the desired monotonicity property and may reject H0 for sample points actually
inside H0 . We will demonstrate this phenomenon in our simulations.

6·2. T he Perlman & Wu (2004) test

Perlman & Wu (2004) replaced the T 2 statistic in the Bloch et al. (2001) test by the
multivariate one-sided likelihood ratio statistic derived by Perlman (1969). Furthermore,
they tested H(S)

0
and H(E)

0
separately at level a, the latter using the same intersection-union

test as ours. Their test statistic for testing H(S)
0
is the difference between the observed vector

x:1·−x:2· and its projection on to the nonpositive orthant O−={h|h
k
∏0 for all k} with

respect to the norm dxd2=x∞SC−1x. Denote this statistic by U2. Then the Perlman & Wu
test rejects if

U2>d, min
1∏k∏m

t(E)
k
>t
n,a

, (6·2)

where d is the upper a critical constant for testing H(S)
0
and is the solution to the equation

(Perlman, 1969)

1

2
prA x2m−1x2

n
1
+n
2
−m
>dB+ 1

2
prA x2

m
x2
n
1
+n
2
−m−1

>dB=a.
In their simulation study, Perlman & Wu (2004) used a modified form of the Bloch

et al. (2001) test analogous to their own as follows:

T 2>T 2
m,n
1
+n
2
−m−1,a

, min
1∏k∏m

t(E)
k
>t
n,a

,

where T 2
m,n
1
+n
2
−m−1,a

is the upper a critical constant of T 2. Note that this form of the
Bloch et al. test as well as the Perlman & Wu test given in (6·2), which test H(S)

0
and

H(E)
0
separately each at level a, are conservative. In our simulations, we used the original

form (6·1) of the Bloch et al. test and we modified the Perlman & Wu test (6·2) to conform
to the same form by evaluating its critical constant d via bootstrap so that the overall
type I error probability is controlled at a.

7. S 

The simulation study was aimed at investigating the control of the type I error rate
over the entire null space by the -, Perlman & Wu (2004) and Bloch et al. (2001)
tests, as well as comparing their powers. Throughout, we used s2

k
=1, d

k
=0, e

k
=ls

k
=l,

for all k, and a=0·05. Furthermore, we restricted attention to the equicorrelated case with
r
kl
=r. A straightforward modification of the bootstrap algorithm given in § 3 was used

to determine the critical value d for the Bloch et al. test and the Perlman & Wu test, using
T 2 for the Bloch et al. test and U2 for the Perlman & Wu test.
First, we investigated the type I error rates for two types of null configuration, one

where h
k
=0 for all k, that is all endpoints have a zero treatment effect, and the other

where m/2 of the endpoints have a zero treatment effect and the remaining m/2 have a
treatment effect equal to−l/2. We considered m=2, 4, 8, l=0·2, 0·5, 0·8, n1=n2=50 and
an equicorrelated matrix with r=0·0, 0·5. The estimated type I error rates are given in
Table 2. Note that the Bloch et al. test has excessive type I error rates, as high as 0·244,
when e

k
=l=0·8 and h is an m-vector of m/2 zeros followed by m/2 elements equal to
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Table 2. Simulation estimates of type I error rates of -, Perlman &
Wu and Bloch et al. tests for a=0·05

h= (0, 0, . . . , 0) h= (0, . . . , 0,−l/2, . . . ,−l/2)
m l r -   -  

2 0·2 0·0 0·052 0·052 0·052 0·024 0·024 0·024
0·5 0·050 0·050 0·049 0·026 0·027 0·027

0·5 0·0 0·052 0·052 0·052 0·014 0·011 0·013
0·5 0·050 0·049 0·050 0·022 0·020 0·035

0·8 0·0 0·048 0·048 0·050 0·014 0·011 0·109
0·5 0·047 0·047 0·049 0·025 0·023 0·211

4 0·2 0·0 0·004 0·004 0·004 0·001 0·001 0·001
0·5 0·047 0·047 0·047 0·023 0·023 0·023

0·5 0·0 0·053 0·049 0·049 0·007 0·004 0·005
0·5 0·049 0·049 0·048 0·018 0·018 0·032

0·8 0·0 0·053 0·051 0·050 0·009 0·005 0·101
0·5 0·047 0·048 0·052 0·026 0·024 0·228

8 0·2 0·0 0·000 0·000 0·000 0·000 0·000 0·000
0·5 0·020 0·020 0·020 0·008 0·008 0·008

0·5 0·0 0·047 0·045 0·046 0·001 0·001 0·001
0·5 0·051 0·050 0·053 0·018 0·017 0·032

0·8 0·0 0·048 0·046 0·046 0·004 0·001 0·060
0·5 0·049 0·047 0·050 0·025 0·024 0·244

For the right-hand columns, h is an m-vector of m/2 zeros and m/2 elements of −l/2.
-, proposed test; , Perlman & Wu test (2004); , Bloch et al. (2001) test.

−l/2, which is a point on the boundary of the null space. On the other hand, the -
and the Perlman & Wu tests control the type I error rates for all configurations. This is
because the Bloch et al. superiority test is only a test of the point null hypothesis h

k
=0

for all k and does not have a monotone rejection region with respect to the positive
orthant

O+={h|h
k
�0 for all k, with at least one h

k
>0}.

As a result, the least favourable configuration of the test over the entire null space
does not occur at the point null hypothesis. This problem of the Bloch et al. test worsens
as r increases because the rejection region of the test becomes more elliptical and less
monotone. The excessive type I error rate of the Bloch et al. test was not observed in the
simulations reported in Bloch et al. (2001) and Perlman &Wu (2004) because these papers
did not examine null configurations where this error rate is near maximum. The -
and Perlman & Wu tests of superiority are both appropriate tests of H0 : hk∏0 for all k,
and have rejection regions that are cone-order monotone (Logan, 2003).
Next we investigated the powers of the three procedures to detect treatment differences.

The global powers to identify the treatment as non-inferior on all endpoints and superior
on at least one endpoint were compared for the same scenarios as above, but for different
treatment-effect configurations. The power results are given in Table 3 for l=0·5. Results
for other values of l were similar with the differences in power among the tests increasing
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Table 3. Simulation estimates of powers of -, Perlman
& Wu and Bloch et al. tests for d

k
=0, e

k
=l=0·5,

a=0·05

m h r -  

2 (0·4, 0) 0 0·455 0·455 0·458
0·5 0·479 0·470 0·507

(0·4, 0·4) 0 0·800 0·855 0·849
0·5 0·686 0·699 0·656

4 (0·4, 0, 0, 0) 0 0·280 0·275 0·276
0·5 0·357 0·340 0·386

(0·4, 0·4, 0, 0) 0 0·486 0·520 0·517
0·5 0·498 0·499 0·547

(0·4, 0·4, 0·4, 0·0) 0 0·704 0·745 0·743
0·5 0·615 0·626 0·644

(0·4, 0·4, 0·4, 0·4) 0 0·938 0·977 0·974
0·5 0·745 0·771 0·663

8 (0·3, 0·3, 0, 0, 0, 0, 0, 0) 0 0·171 0·182 0·179
0·5 0·235 0·230 0·272

(0·3, 0·3, 0·3, 0·3, 0, 0, 0, 0) 0 0·338 0·359 0·356
0·5 0·357 0·361 0·417

(0·3, 0·3, 0·3, 0·3, 0·3, 0·3, 0, 0) 0 0·573 0·596 0·592
0·5 0·444 0·464 0·484

(0·3, 0·3, 0·3, 0·3, 0·3, 0·3, 0·3, 0·3) 0 0·901 0·919 0·918
0·5 0·554 0·585 0·422

-, proposed test; , Perlman &Wu (2004) test; , Bloch et al.
(2001) test.

with l. For r=0, the Perlman & Wu and Bloch et al. tests have similar powers. For
r=0·5, the Bloch et al. test has higher power when the number of endpoints with a
positive treatment effect is low, while the Perlman & Wu test has higher power when most
of the endpoints have a positive treatment effect. The higher power of the Bloch et al. test
is mainly due to its inflated type I error rate. When comparing the - test with the
Perlman & Wu test, we see that the former has slightly higher power in general when
fewer than half of the endpoints have positive treatment effects, while the Perlman & Wu
test has significantly higher power when half or more of the endpoints have positive
treatment effects. This is consistent with the previous findings on superiority tests (Logan,
2003). It is interesting to note that the power of the procedures is sensitive to the correlation
in a specific pattern. When half or fewer of the endpoints have a nonzero treatment effect,
the power is higher for correlated endpoints, but, when more than half have a nonzero
treatment effect, the power is higher for uncorrelated endpoints.
Based on the simulation results, we conclude that the Perlman & Wu test has the best

performance of the three tests. The - test is a close second. The Bloch et al. test has
power comparable to the Perlman & Wu test, but it does not control the type I error rate
and hence is not recommended.
All of the above tests address a single global hypothesis in (2·1). It might be useful to

derive a stepwise multiple test procedure that can determine which of the endpoints show
a superior treatment effect with familywise error rate control (Hochberg & Tamhane,
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1987, p. 3). The - test is most convenient for this purpose. Finally, the approach given
here can be generalised to deal with the goal of showing that the treatment is equivalent
on all endpoints and superior on at least r endpoints, where r is specified (1∏r<m).
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